

Railway Recruitment Board

RRB JE

ELECTRONICS

&

Allied Engineering

Chapterwise Solved Papers

Chief Editor

A. K. Mahajan

Written & Complied by

Er. Anil Kumar, Er. Ajeet Kumar

Computer Graphics by

Balkrishna Tripathi & Ashish Giri

Editorial Office

12, Church Lane Prayagraj-211002

 9415650134

Email : yctap12@gmail.com

website : www.yctbooks.com/www.yctfastbook.com/www.yctbooksprime.com

© All Rights Reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd.
and printed by Laxmi Narayan Printing Press. In order to Publish the book,
full care has been taken by the Editor and the Publisher,
still your suggestions and queries are welcomed.

In the event of any dispute, the judicial area will be Prayagraj.

₹ : 1095/-

INDEX

■ Electronic Components & Materials	11-67
□ Conductors	11
□ Semiconductor & Insulators.....	16
□ Magnetic Materials.....	38
□ Jointing & Cleaning Materials for U/G Copper Cable & OFC.....	48
□ Cells and Batteries (Chargeable and non Chargeable).....	52
□ Relays	60
□ Switches	66
□ MCB & Connectors	67
■ Electronic Devices and Circuits.....	68-174
□ PN Junction Diode.....	68
□ Thyristor	76
□ Diode and Triode Circuits	89
□ Junction Transistors.....	106
□ Field Effect Transistors (JFET, MOSFET & CMOS).....	129
□ Amplifiers.....	140
□ Oscillator	150
□ Multivibrator and Power Supply	158
□ Converters.....	160
□ Rectifiers.....	162
□ Inverter and UPS	170
□ Choppers and Drives	172
■ Digital Electronics	175-230
□ Number System	175
□ Binary Codes	185
□ Boolean Algebra	186
□ Logic Gates.....	193
□ Combinational Circuits	201
□ Sequential logic Circuits.....	210
□ Logic Family	220
□ A/D & D/A Converter	222
□ Counters.....	225
□ Memories.....	226
□ Integrated Circuits	229
■ Linear Integrated Circuit.....	231-254
□ Introduction to operational Amplifier	231
□ Linear Applications	238
□ Non-Linear Applications.....	244
□ Voltage Regulators.....	245
□ Timers.....	250
□ Phase Lock Loop	253
■ Microprocessor and Microcontroller.....	255-296
□ Introduction to Microprocessor.....	255
□ 8085 Microprocessor Working	260

□ Assembly Language Programming.....	275
□ Peripherals & other Microprocessors.....	276
□ Microcontrollers.....	281
■ Electronic Measurements.....	297-375
□ Measuring System	297
□ Basic Principles of Measurement	307
□) Range Extension Methods.....	324
□ Cathode Ray Oscilloscope.....	332
□ LCD (Electronic voltmeters and digital voltmeters)	341
□ LED Panel	342
□ Transducers.....	343
□ Measurement of Resistance, Inductance and Capacitance	354
□ Power and Energy Meter	364
■ Communication Engineering.....	376-448
□ Introduction to Communication	376
□ Modulation Techniques.....	380
□ Multiplexing Techniques.....	415
□ Wave Propagation	417
□ Transmission line characteristics	422
□ OFC	433
□ Fundamentals of Public Address systems	434
□ Electronic exchanges.....	435
□ Advance communication.....	435
□ Radar	440
□ Cellular and satellite communication.....	442
■ Data communication and Network	449-478
□ Introduction to Data Communication	449
□ Hardware and Interface	452
□ Introduction to Networks and Networking Devices	460
□ Local Area Network and Wide Area Network	462
□ Internet Working	468
■ Computer Programming.....	479-498
□ Programming Concepts	479
□ Fundamentals of 'C' and C ⁺⁺	482
□ Operators in 'C' and C ⁺⁺	485
□ Control Statements	487
□ Functions	488
□ Array String & Pointers.....	489
□ File Structure	491
□ Data Structure and DBMS	491
■ Basic Electrical Engineering.....	499-576
□ DC Circuits	499
□ AC Fundamentals	535
□ Electro Magnetic Field	554
□ Thermal and Chemical Effects of Electric Current	563
□ Earthing-Installation	565
□ Maintenance.....	570
□ Testing	575

SYLLABUS

RRB JE CBT-2 Electronics Engineering

- **Electronic Components & Materials:** Conductors, Semiconductor & Insulators; magnetic materials; jointing & cleaning materials for U/G copper cable & OFC; Cells and Batteries (Chargeable and non chargeable); Relays, Switches, MCB & Connectors.
- **Electronic Devices and circuits:** PN Junction diodes, thyristor; Diode and triode circuits; Junction Transistors: Amplifiers; Oscillator; multivibrator, counters; Rectifiers; Inverter and UPS.
- **Digital Electronics:** Number system and Binary codes; Boolean Algebra & Logic gates; Combinational & Sequential logic circuits; A/D & D/A Converter, counters, Memories.
- **Linear Integrated Circuit:** Introduction to operational Amplifier, Linear applications; Non-Linear applications, Voltage regulators, Timers; Phase lock loop.
- **Microprocessor and Microcontroller:** Introduction to microprocessor, 8085 microprocessor working; Assembly Language programming; Peripherals & other microprocessors; Microcontroller.
- **Electronic Measurements:** Measuring systems; Basic principles of measurement, Range Extension methods, Cathode ray oscilloscope, LCD, LED panel, Transducers.
- **Communication Engineering:** Introduction to communication; Modulation techniques; Multiplexing Techniques Wave propagation, Transmission line characteristic, OFC; Fundamentals of Public Address systems, Electronic exchange, Radar, Cellular and Satellite communication.
- **Data communication and Network:** Introduction to data communication, Hardware and interface; Introduction to Networks and Networking devices; Local Area Network and Wide area Network; Internet working.
- **Computer Programming:** Programming concepts; Fundamentals of 'C' and C⁺⁺; Operators in 'C' and C⁺⁺; Control Statements; Functions, Array String & Pointers, File Structure; Data Structure and DBMS.
- **Basic Electrical Engg:** DC Circuits; AC fundamentals; Magnetic, Thermal and Chemical effects of Electric current; Earthing-Installation, Maintenance, Testing.

NE-01 (UPMRCL) SCTO

Electrical/Electronics & Telecommunication

■ **BASIC ELECTRICAL ENGINEERING**

Basic concepts and principles of D.C and A.C fundamental, A C circuits, batteries, electromagnetic induction etc. including constant voltage and current sources.

■ **ANALOG ELECTRONICS**

Fundamental concepts of basic electronics and basic understanding of conductors, semiconductors and insulators, extrinsic and intrinsic semi-conductors, p-n junction, need of rectifiers in electronics, understanding of filters in rectifiers, tunnel diodes, LEDs, varactor diodes, LCD; working of transistors in various configurations; Concept of FETs and MOSFET etc.

■ **CONTROL SYSTEMS**

Basic elements of control system, open loop control system, closed loop control system, control system terminology, manually controlled closed loop systems, automatic controlled closed loop systems, basic elements of a servo mechanism, Examples of automatic control systems, use of equivalent systems for system analysis, linear systems, non-linear systems, control system examples from chemical systems, mechanical systems, electrical systems, introduction to Laplace transform. Transfer function analysis of ac and dc servomotors synchros, stepper motor, amplidyne, ac position control system, magnetic amplifier. Control system representation: Transfer function, block diagram, reduction of block diagram, problems on block diagram, Mason's formula signal flow graph Time Response Analysis : Standard test signals, time response of first and second-order system, time constant, time response of second order system, time response specifications, steady-state errors and error constants, problems in first and second order system. Stability: Routh Hurwitz Criterion, Root Locus, Bode Plotting using semi log graph paper Introduction to multiloop control system and its types, feed forward, cascade, ratio, split range, control system. Study of different processes using above mentioned control systems Non-Linear Control System : Introduction, behaviour of non-linear control system. Different types of nonlinearities, saturation, backlash, hysteresis, dead zone, relay, fiction, characteristics of non-linear control system, limit cycles, jump resonance, jump phenomenon. Difference between linear and non-linear control system.

■ **ELECTRONIC COMPONENTS AND MATERIALS**

Materials : Classification of materials , Conducting, semi-conducting and insulating materials through a brief reference to their atomic structure.

Conducting Materials : Resistors and factors affecting resistivity such as temperature, alloying and mechanical stressing. Classification of conducting materials into low resistivity and high resistivity materials.

Insulating Materials : Important relevant characteristics (electrical, mechanical and thermal) and applications of the following material: Mica, Glass, Copper, Sliver, PVC, Silicon, Rubber, Bakelite, Cotton, Ceramic, Polyester, Polythene and Varnish.

Magnetic Materials : Different Magnetic materials; (Dia, Para, Ferro) and their properties. Ferro magnetism, Domains, permeability, Hysteresis loop. Soft and hard magnetic materials, their examples and typical applications.

■ **MEASURING INSTRUMENTS**

Introduction to Testing and Measurements, Measurement of Resistance, Inductance and Capacitance, Ammeter, Voltmeter and Multimeter, Power and Energy Measurements, Frequency and Phase difference Measurement

■ **PRINCIPLES OF INSTRUMENTATION**

Basic building blocks of any instrumentation systems, Performance characteristics of Oscillator Instruments, Instrument selection: Factors affecting instrument selection, accuracy, precision, linearity, resolution, sensitivity, hysteresis, reliability, serviceability, loading effect, range advantage and limitation, cost effectiveness and availability - Static and dynamic response - Environmental effects - Calibration tools

■ **FUNDAMENTALS OF DIGITAL ELECTRONICS**

Concepts of Digital electronics, Number system , gates, codes, arithmetic logic circuits, flip-flops, shift resistors and counters.

■ **BASIC OF Microprocessors**

Architecture of a typical microprocessor, configurations and instructional pair configuration systems and working of various peripheral interface chips. 8085 Microprocessors, architecture, instruction sets and introduction to 8086.

■ **POWER ELECTRONICS**

Introduction to thyristors and other power Electronics devices, Controlled Converters, Inverters, Choppers.

■ **COMPUTER AIDED INSTRUMENTATION**

Computer aided Instrumentation, Buses and Standards : Introduction , BUS types : The I/O BUS a) ISA bus b) EISA Bus c) PCI bus , GPIB 2.5 RS-232, Linear Circuits and Signal Conditioning, Parallel Port (PP) Interfacing Techniques, Serial Port (SP) Interfacing Techniques, USB Port Interfacing Techniques.

■ **QUALITY AND RELIABILITY TECHNIQUES**

Quality organization and Management: Introduction, Quality Policy, Task for Quality and Introduction to Total Quality Systems

Quality costs : Prevention costs, appraisal costs, internal failure costs, external failure costs, impact of quality costs on profitability

■ **Basic Electrical Engg. And Electt. Measurements:**

Concepts of currents, Voltage, Resistance, Power and energy, their units, Ohm's law. Circuit Law: Kirchhoff's law Solution of simple network problems, Network theorems and their applications, Electro-magnetism concept of flux, Emf, Reluctance, Magnetic circuits, Electro-magnetic induction, Self and mutual inductance.,A.C. fundamentals Instantaneous, Peak, R.m.s. And average values of alternating waves, Equation of sinusoidal wave form, Simple series and parallel a.c. Circuits consisting of R.L. and C. Resonance, Measurement and measuring instruments Moving coil and moving iron ammeters and voltmeters, Extension of range, Watt meters, Multimeters, Megger, Basic Electronics.

■ **Electrical machines:**

Basic principles D, C motors of generators, their characteristics, Speed control and starting of D.C. motors, Losses and efficiency of D.C. machines.

■ **1-phase and 3-phase Transformers:**

Principles of Operation, Equivalent Circuit, Voltage Regulation O.C. And S.C. Tests, Efficiency, Auto Transformers, Synchronous Machines, Generation Of Three Phase Emf, Armature Reaction, Voltage Regulation, Parallel Operation Of Two Alternators, Synchronizing, Starting And Applications Of Synchronous Motors, 3-Phase Induction Motor, Rotating Magnetic Field, Principle Of Operation, Equivalent Circuit, Torque Speed Characteristics, Starting And Speed Control Of 3-Phase Induction Motors, Fractional Kw Motors, 1-Phase Induction Motors A.C. Series Motor, Reluctance Motor.

■ **General, Transmission and Distribution:**

Different types of power stations, Load factor, Diversity factor, Demand factor, Simple problems thereon, Cost of generation inter connection of power stations, Power factor improvement, Various types of tariffs, Types of faults Short circuit current for symmetrical faults, Switchgears-rating of circuit breakers: Principles of a arc extinction by oil and air, H.R.C. fuses, Protection earthier leakage, Over current Buchhotz relay Merz-Prince system of protection of generators & transformers, Protection of feeders and bus bars., Lightning arresters, Various transmission and distribution systems, Comparison of conductor materials. Efficiency for different systems.

■ **Utilization of Electrical Energy:**

Illumination, Electric heating, Electric welding, Electroplating, Electric drivers and motors.

Electronics Engineering

Previous Years Papers Analysis Chart

S.N.	EXAM NAME	EXAM DATE	No. of Questions
RAILWAY RECRUITMENT BOARD (RRB)-2025			
1.	RRB JE	22.04.2025 (Shift-I)	100
2.	RRB JE	22.04.2025 (Shift-II) Cancelled	100
3.	RRB JE	04.06.2025 (Re. Exam)	100
RAILWAY RECRUITMENT BOARD (RRB)-2019			
4.	RRB JE 2019	31.08.2019	150
5.	RRB JE 2019	01.09.2019	150
DEDICATED FREIGHT CORRIDOR CORPORATION OF INDIA LIMITED (DFCCIL)			
6.	DFCCIL S&T	17.12.2023	60
7.	DFCCIL Executive	20.12.2023	96
8.	DFCCIL S&T	29.09.2021	96
9.	DFCCIL Electrical	30.09.2021	96
10.	DFCCIL Electrical	11.11.2018	96
11.	DFCCIL Electrical	17.04.2016	80
12.	DFCCIL S&T	17.04.2016	80
UTTAR PRADESH METRO RAIL CORPORATION (UPMRC)			
13.	UPMRC JE (S&T)	03.01.2023	90
14.	LMRC SCTO Shift-II	17.04.2021	90
15.	LMRC JE (S&T) Shift-III	20.01.2020	90
16.	LMRC JE S&T	12.05.2018	90
17.	LMRC SCTO	16.04.2018	90
18.	LMRC JE	17.03.2016	90
19.	LMRC SCTO Shift-I	17.03.2016	90
20.	LMRC JE	26.06.2015	90
DELHI METRO RAIL CORPORATION(DMRC)/NMRC/JMRC			
21.	DMRC JE Electronics (Contract)	23-02-2020	75
22.	DMRC JE Electronics (Regular)	2020	75
23.	DMRC JE Electronics Shift-II	19.4.2018	75
24.	DMRC JE Electronics Shift-II	11.4.2018	75
25.	DMRC JE Electronics Shift-III	11.04.2018	75
26.	DMRC JE Electronics Shift-I	17.2.2017	75
27.	DMRC JE Electronics Shift-II	17.02.2017	75

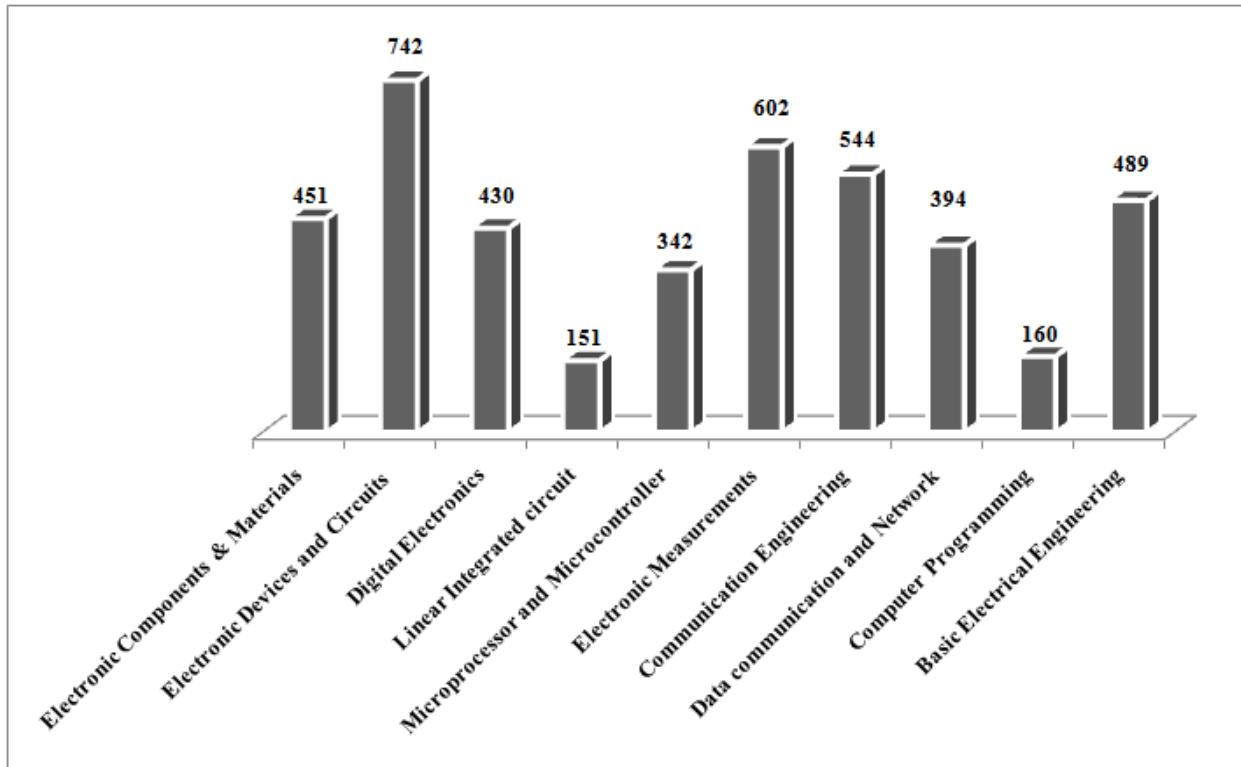
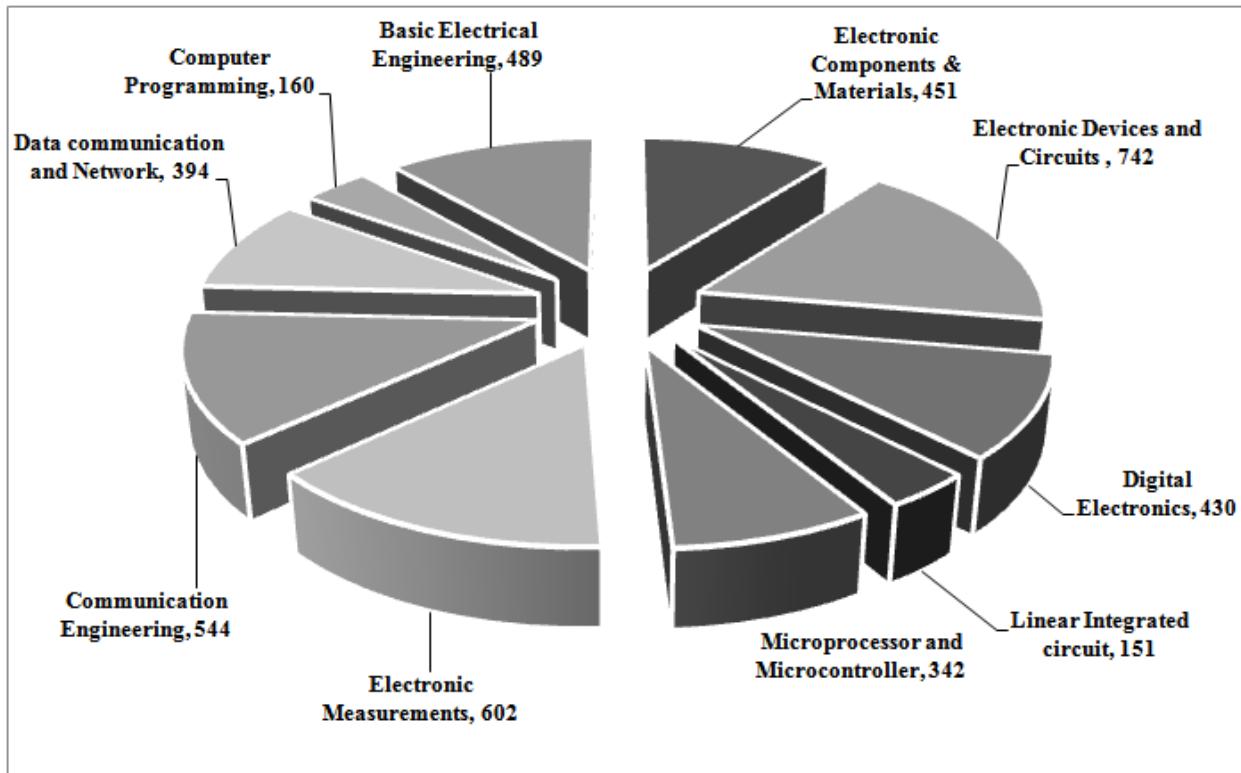
28.	DMRC JE Electronics Paper-I	06.03.2016	75
29.	DMRC JE Electronics Paper-I	15.03.2015	75
30.	DMRC JE Electronics Paper-I	21.09.2014	75
31.	NMRC BECIL	2019	45
32.	NMRC JE Electronics	2017	75
33.	NMRC JE Electrical	2017	75
34.	JMRC	2021	48

RAILWAY RECRUITMENT BOARD (RRB)-2015

35.	RRB SSE Shift -I	01.09.2015	20
36.	RRB SSE Shift -II	01.09.2015	21
37.	RRB SSE Shift -III	01.09.2015	21
38.	RRB SSE Shift -I	02.09.2015	22
39.	RRB SSE Shift -II	02.09.2015	20
40.	RRB SSE Shift -III	02.09.2015	21
41.	RRB SSE Shift -I	03.09.2015	22
42.	RRB SSE Shift -II	03.09.2015	20
43.	RRB SSE Shift -III	03.09.2015	20
44.	RRB J.E Shift -II	04.09.2015	21
45.	RRB J.E Shift -III	16.09.2015	22
46.	RRB J.E Shift -I	26.08.2015	22
47.	RRB J.E Shift -II	26.08.2015	21
48.	RRB J.E Shift -III	26.08.2015	20
49.	RRB J.E Shift -I	27.08.2015	22
50.	RRB J.E Shift -II	27.08.2015	21
51.	RRB J.E Shift -III	27.08.2015	20
52.	RRB J.E Shift -I	28.08.2015	22
53.	RRB J.E Shift -II	28.08.2015	19
54.	RRB J.E Shift -III	28.08.2015	21
55.	RRB J.E Shift -I	29.08.2015	20
56.	RRB J.E Shift -II	29.08.2015	22
57.	RRB J.E Shift -III	29.08.2015	22
58.	RRB J.E Shift -III	30.08.2015	21

RAILWAY RECRUITMENT BOARD (RRB)-2014

59.	RRB JE Allahabad	2014	22
60.	RRB JE Gorakhpur	2014	23
61.	RRB JE Chandigarh	2014	22
62.	RRB JE Jharkhand	2014	21
63.	RRB JE Guwahati	2014	22
64.	RRB JE Bhopal	2014	23
65.	RRB JE Ahmedabad	2014	20
66.	RRB JE Ajmer	2014	21
67.	RRB SSE Green Paper (Bilaspur, Secunderabad)	21.12.2014	21



68.	RRB SSE Yellow Paper (Bilaspur, Secunderabad)	21.12.2014	22
69.	RRB SSE Red Paper (Bilaspur, Secunderabad)	21.12. 2014	23

OTHER RAILWAY JE & SSE Exams.

70.	RRB Allahabad JE 2010	19.12.2010	25
71.	RRB Allahabad SSE 2010	19.12.2010	23
72.	RRB Mumbai JE 2008	05.10.2008	28
73.	RRB Mumbai SSE 2008	05.10.2008	31
74.	RRB Mumbai JE 2010	19.12.2010	22
75.	RRB Mumbai SSE 2010	19.12.2010	26
76.	RRB Bhubaneswar JE-II 2010	19.12.2010	20
77.	Konkan Railway STA 2017	2017	24
78.	Konkan Railway TA 2017	2017	18
79.	Konkan Railway SSE 2015	2015	31
80.	RRB Kolkata Diesel JE 2009	25.10.2009	23
81.	RRB Chandigarh SSE 2009	25.10.2009	26
82.	RRB Mumbai C&G JE 2009	25.10.2009	24
83.	RRB Gorakhpur RDSO SSE 2009	25.10.2009	25
84.	RRB Jammu JE 2009	25.10.2009	23
85.	RRB Malda SSE 2009	25.10.2009	27
86.	RRB Allahabad JE 2009	25.10.2009	21
87.	RRB Mumbai C&G SSE 2009	25.10.2009	26
88.	RRB Patna JE	25.10.2009	23
89.	RRB Bhopal TM SSE 2009	25.10.2009	24
90.	RRB Allahabad SSE 2012	09.09.2012	25
91.	RRB Bangalore SSE 2012	09.09.2012	29
92.	RRB Kolkata SSE 2012	09.09.2012	18
93.	RRB Gorakhpur Design SSE 2012	09.09.2012	23
94.	RRB Bhopal SSE 2012	09.09.2012	25
95.	RRB Chandigarh SSE 2012	09.09.2012	28
96.	RRB Jammu SSE 2012	09.09.2012	23
97.	RRB Allahabad JE 2012	09.09.2012	21
98.	RRB Bhubaneswar JE II 2008	29.11.2008	25
99.	Konkan Railway STA 2017	2017	23
100.	Konkan Railway TA 2017	2017	24
101.	Konkan Railway SSE 2015	2015	20

102.	RRB Kolkata Diesel JE 2009	25.10.2009	22
103.	RRB Bhopal Section Engineer,	24.11.2002	24
104.	RRB Bhopal & Mumbai Apprentice Section Engg.	23.03.2003	28
105.	RRB Secunderabad Section Engineer (Elect.)	29.06.2008	22
106.	RRB Bangalore Section Engineer (Elect.)	01.02.2009	23
107.	RRB Chandigarh Section Engineer,	15.03.2009	25
108.	RRB Chennai Section Engineer,	12.02.2012	27
109.	RRB Chandigarh Section Engineer (Elect.)	26.02.2012	24
110.	RRB Chandigarh Section Engineer,	26.02.2012	29
111.	RRB Jammu Section Engg., 2013	2013	20
112.	RRB Bhubaneswar Section Engineer (Electrical)	19.08.2001	18
113.	RRB Kolkata Engineer	20.02.2000	15
114.	RRB Kolkata Apprentice Engineer	14.10.2001	20
115.	RRB Bangalore Material Engineer	21.11.2004	21
116.	RRB Kolkata Mech. Engineer	06.02.2005	15
117.	RRB Allahabad Junior Engineer-II	08.01.2006	15
118.	RRB Kolkata Jr. Engineer-II Electrical DRG & Design,	11.06.2006	15
119.	RRB Kolkata Technical- Engineer	20.08.2006	28
120.	RRB Chennai Technical (Engineer)	15.04.2007	25
121.	RRB Bangalore Technical (Engineer)	22.04.2007	27
122.	RRB Secunderabad Technical (Engg.)	20.05.2007	22
123.	RRB Patna Technical Engineer,	27.07.2008	28
124.	RRB Thiruvananthapuram Section Eng.	04.01.2009	19
125.	RRB Bangalore Section Engineer	01.02.2009	23
126.	RRB Chandigarh Section Engineer	15.03.2009	26
127.	RRB Chandigarh Section Engineer	26.02.2012	27
128.	RRB Bhopal Section Engineer	24.11.2002	20
Total			5042

Trend Analysis of Electronics Questions Through Pie Chart and Bar Graph

- Conductors ■ Semiconductor & Insulators ■ Magnetic materials ■ Jointing & cleaning materials for U/G copper cable & OFC ■ Cells and Batteries (Chargeable and non chargeable)
- Relays ■ Switches ■ MCB & Connectors.

(i) Conductors

1. Tungsten, due to its high melting point and excellent electrical conductivity, is widely used in high-temperature applications. Which of the following properties of tungsten makes it particularly suitable for use in electrical components like filaments and electrodes in high-temperature environments?
 - (a) High electrical conductivity and low resistivity
 - (b) High melting point and resistance to thermal shock
 - (c) High melting point and low coefficient of expansion
 - (d) Low melting point and excellent oxidation resistance

RRB JE 04.06.2025, Shift-I (Re-Exam)

Ans. (c) : Tungsten due to its high melting point and excellent electrical conductivity is widely used in high-temperature applications.

- High melting point (3414°C) and low coefficient of expansion properties of Tungsten makes it particularly suitable for use in electrical components like filaments and electrodes in high-temperature environments.
- Tungsten has highest tensile strength, high density (19.3 g/cm³)
- It has good thermal and electrical conductivity but it is brittle at room temperature.

2. Which of the following materials is typically preferred for electrical conductors due to its high conductivity and resistance to corrosion?

- (a) Manganin
- (b) Gold
- (c) Steel
- (d) Copper

RRB JE 22.04.2025, Shift-II (Cancelled)

Ans. (d) : Copper is typically preferred for electrical conductors due to its high conductivity and resistance to corrosion.

- Copper has high electrical conductivity, good mechanical strength, excellent resistance to corrosion and cost-effectiveness.

3. Which of the following describes the effect of hardening in conducting materials such as copper and aluminium?
 - (a) It increases ductility and reduces resistance
 - (b) It reduces electrical conductivity and increases brittleness
 - (c) It has no effect on the material's electrical properties
 - (d) It increases hardness and tensile strength, but reduces ductility

RRB JE 22.04.2025, Shift-II (Cancelled)

Ans. (b) : When conducting materials like copper and aluminium are hardened, the following happens-

- Increases brittleness (break or fracture suddenly under stress).
- Electrical conductivity decreases.

4. Manganin is a copper-manganese alloy that is widely used in precision resistors and temperature-sensitive applications. Which of the following properties makes manganin particularly useful in these applications?
 - (a) High tensile strength and ductility
 - (b) High electrical conductivity
 - (c) Low temperature coefficient of resistance
 - (d) High thermal coefficient of resistance

RRB JE 22.04.2025, Shift-I

Ans. (c) : Manganin is a copper-manganese alloy that is widely used in precision resistor and temperature sensitive application. The low temperature coefficient of resistance properties makes Manganin particularly useful in these applications.

5. Which of the following is a primary characteristic of low resistivity materials used in electrical conductors?
 - (a) High insulation properties and poor conductivity
 - (b) High thermal resistance and poor conductivity
 - (c) High cost and low flexibility
 - (d) High conductivity and low resistivity

RRB JE 22.04.2025, Shift-I

Ans. (d) : High conductivity and low resistivity is a primary characteristic of low resistivity material used in electrical conductors.

- Low resistivity material (such as copper or silver) are used in electrical conductors because they allow electric current to flow easily. This means they have High conductivity (they conduct electricity well) Low resistivity (they resist the flow of electric current very little).

6. **What is the primary effect of the annealing process on conducting materials such as copper and aluminium?**

- It increases tensile strength and hardness.
- It causes oxidation of the material's surface.
- It reduces electrical resistance by decreasing the number of dislocations.
- It increases the material's brittleness.

RRB JE 22.04.2025, Shift-I

Ans. (c) : The primary effect of the annealing process on conducting materials such as copper and aluminium is that it reduces electrical resistance by decreasing the number of dislocations.

- When dislocations are reduced, electrons can flow more freely.
- Annealing is a heat treatment process applied to metals like copper and aluminium.

7. **The most commonly used electrical conductor is—**

- Lead
- Copper
- Brass
- Tin

RRB JE- 01.09.2019

RRB Bhubaneswar JE-II 29.11.2008

Ans. (b) : The most commonly used electrical conductor is copper. Copper is a metal which has high conductivity and low resistivity.

- It is easily available.
- Resistivity of copper is 1.77×10^{-8} ohm-meter.
- Melting point of copper is 1084°C .

8. **Which material has the highest electrical conductivity?**

- Aluminium
- Steel
- Silver
- Lead

RRB JE 31.08.2019

RRB Mumbai 2015

Ans. (c) : Silver has the highest electrical conductivity. It is a conducting material with a large number of free electrons. Due to large number of free electron it has a high electrical conductivity. The resistivity of silver is $1.59 \times 10^{-8} \Omega\text{m}$ and the conductivity is $6.29 \times 10^7 \Omega^{-1}\text{m}^{-1}$

9. **A conductor is said to be perfect if it has electrical conductivity.**

- Zero
- Finite
- Infinite
- Unity

RRB JE 31.08.2019

Ans. (c) : A conductor is said to be perfect if it has infinite electrical conductivity. Conductor are those substances in which the number of free electron is very high ($\square 10^{22}$ per unit volume)

Silver is the best conductor of electricity because it contains a higher number of free electrons.

10. **A material is said to have become superconductor when**

- its resistance becomes negative
- its resistance becomes very small
- its resistance decreases
- its resistance becomes zero

RRB SSE Bilaspur Yellow paper, 21.12.2014

Ans : (d) A material is said to have become superconductor when its resistance becomes zero. A superconductor is a material that attains, Superconductivity a state of matter with no electrical resistance. In a superconductor an electric current can persist indefinitely.

For Superconducting material ($\mu_r = 0$, Susceptibility (χ) = Negative,

11. **Which of the following material has the highest electrical conductivity?**

- Gold
- Silver
- Copper
- Aluminium

RRB Chennai technical (Engg.) 15.04.2007

Ans. (b) : A conductor is a material which gives very little resistance to the flow of an electric current. Silver has the highest electrical conductivity out of all material. The decreasing order of conductivity is Silver > Copper > Gold > Aluminium.

12. **5×10^{16} electrons pass across the section of a conductor in 1 minute 20 sec. The current flowing is :**

- 1 mA
- 0.1 mA
- 0.01 mA
- 10 mA

RRB SSE (shift-III), 02.09.2015

Ans : (b) $Q = it$ and $Q = ne$ where $e = 1.6 \times 10^{-19} \text{ C}$

$$i = \frac{ne}{t} \Rightarrow \frac{5 \times 10^{16} \times 1.6 \times 10^{-19}}{80} = 0.1 \text{ mA}$$

13. **Are usually found in the nucleus of an atom**

- Proton and Neutron
- Proton and Electron
- Electron and Neutron
- Only Neutron

RRB Ajmer Electronic – 2014

Ans : (a) Generally, the nucleus of an atom consists of protons and neutrons. Electrons in revolve in outside the nucleus.

14. **Which of the following is not one of the effects of rise in temperature on resistance?**

- Decrease in the resistance of pure metals
- Increase in the resistance of alloys
- Decrease in the resistance of electrolytes, insulators, etc.
- Increase in the resistance of pure metals

RRB Jammu JE-25.10.2009

DFCCIL Executive (EE) -30.09.2021

Ans.(a): Pure metal (conductor) has positive temperature coefficient i.e. when temperature increases, resistance also increases.

15. The composition of constantan is:

- (a) Cu = 60% and Ni = 40%
- (b) Cu = 43%, Ni = 17% and Mn = 40%
- (c) Sn = 23.43%, Cu = 43.67% and Ni = 32.9%
- (d) Mn = 65% and Zn = 35%

UPMRC JE- 20.01.2020, 4:00 to 6:00 PM
 DMRC Electronics 17.02.2017, 12:00 – 2:15 PM
 Delhi Metro Electronics JE 2017
 RRB Bhopal SSE 24.11.2002

Ans. (a) : Constantan:- It is a copper and nickel alloy used in the production of thermocouples and thermocouple extension wire as well as precision resistor and two temperature resistance heating application.

Constantan = Cu (60%) + Ni (40%)

16. Metal film resistors are made by depositing a very thin layer of metal on-

- (a) Metal rod
- (b) Bakelite sheet
- (c) Ceramic rod
- (d) Metal sheet

RRB Bhubaneswar JE-II 29.11.2008

Ans : (b) Metal film resistors are made by depositing a very thin layer of metal on Bakelite Sheet.

17. In the superconducting state, the flux lines of a magnetic field are ejected out of the superconductor as per-

- (a) Curie effect
- (b) Faraday's effect
- (c) Maxwell's effect
- (d) Meissner effect

RRB Chandigarh SSE 15.03.2009

Ans. (d) : In the superconducting state the flux lines of a magnetic field are ejected out of the super conductor as per Meissner effect. The Meissner effect is a property of all superconductor was discovered by the German Physicists W. Meissner and R. Ochsenfeld in 1933.

18. The usual matter of soldering is

- (a) Steel alloy
- (b) White metal
- (c) Alloy of lead and tin
- (d) Alloy of copper and zinc

RRB Bhubaneswar JE-II, 19.12.2010

Ans. (c) : The usual matter of soldering is alloy of lead and tin. Those alloys which work to join two or more metallic pieces or small work item by melting themselves due to heat that is called solder material.

1. Tin and lead less than soft solder (melting point 40°C)
2. Hard solder - melting point above 400°C

- (a) Brass solder - Copper + Zinc
- (b) Silver solder - Copper + silver

19. Which of the following lists four platinum, silver, aluminium and copper in increasing order of resistivity?

- (a) Platinum, Aluminium, Copper, Silver
- (b) Silver, Copper, Platinum, Aluminium
- (c) Copper, Silver, Aluminum, Platinum
- (d) Silver, Copper, Aluminium, Platinum

Noida Metro Electronic JE 2017, SAIL 29.3.2014

RRB Allahabad JE-19.12.2010

Ans : (d)

Material	Resistivity (Ω-m)
Silver	1.59×10^{-8}
Copper	1.68×10^{-8}
Gold	2.4×10^{-8}
Aluminium	2.88×10^{-8}
Tungsten	5.6×10^{-8}
Platinum	10.6×10^{-8}

Increasing order of resistivity -

Silver, Copper, Aluminium, Platinum.

20. Silver tungsten contact material has _____ thermal and electrical conductivity.

- (a) zero
- (b) low
- (c) medium
- (d) high

UPMRCL JE 03.01.2023, 1:30 PM- 3:30 PM

Ans. (d) : Silver tungsten contact material has high thermal and electrical conductivity.

21. The correct sequence of increasing order of electrical resistivity of the given material is-

- (a) Diamond, Silicon, Gold, Doped germanium
- (b) Gold, Silicon, Doped germanium, Diamond
- (c) Gold, Doped germanium, Silicon, Diamond
- (d) Gold Diamond, Doped germanium, Silicon

Konkan Railway TA-2017

Ans. (c) : Electrical resistivity (also called specific electrical resistance or volume resistivity) and it is reciprocal of electrical conductivity, and it is a fundamental property of a material that identifies how strongly it resists of the electric current. The SI unit of electrical resistivity is the ohm-meter. Increasing order of electrical resistivity of materials. Gold, Doped Germanium, Silicon, Diamond.

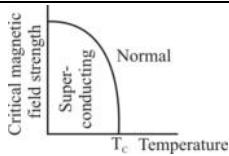
22. The best definition of a superconductor is:

- (a) It is a material showing perfect conductivity and Meissner effect below a critical temperature
- (b) It is conductor having zero resistance
- (c) It is a perfect conductor with highest diamagnetic susceptibility
- (d) It is a perfect conductor but becomes resistive when the current density through it exceeds a critical value

BMRCL JE 24.02.2019

Ans : (a) A superconductor is a material that achieve superconductivity which is a state of matter that has no electrical resistance and does not allow magnetic field to penetrate.

Superconductor is a material showing perfect conductivity and Meissner effect below a critical temperature.


Effect of magnetic field on superconductivity -

$$H_c = H_{c(0)} \left[1 - \left(\frac{T^2}{T_c^2} \right) \right]$$

H_c = critical value of magnetic field

$H_{c(0)}$ = critical magnetic field at 0K

T_c = critical temperature

23. _____ is a weak electron - electron bond pair mediated by a phonon interaction.

(a) Electron pair (b) Cooper pair
(c) Ion pair (d) Fermions pair

UPMRCL JE (S&T) 03.01.2023, 1:30-3:30PM

Ans. (b) : Cooper pair is a weak electron - electron bond pair mediated by a phonon interaction.

Electron-phonon interaction- The electron-phonon interaction is one of the cornerstones of condensed matter physics. It is a major scattering mechanism that limits charge carrier mobility in bulk semiconductor.

24. Pure Metals generally have:

(a) High Conductivity and Low temperature coefficient
(b) High Conductivity and High temperature coefficient
(c) Low Conductivity and zero temperature coefficient
(d) Low Conductivity and High temperature coefficient

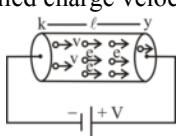
RRB Allahabad SSE 19.12.2010

Ans : (b) Pure metal generally have high conductivity and high temperature co-efficient. Pure metal has low value of specific resistance and high value of conductivity. It has positive temperature co-efficient.

25. Which of the following is not one of the effects of rise in temperature on resistance?

(a) Decrease in the resistance of pure metals
(b) Increase in the resistance of alloys
(c) Decrease in the resistance of electrolytes, insulators, etc.
(d) Increase in the resistance of pure metals

DFCCIL Executive (EE) -30.09.2021


Ans.(a): Pure metal (conductor) has positive temperature coefficient i.e. when temperature increases, resistance also increases.

26. Charge velocity is defined as the:

(a) Speed with which the effect of EMF is experienced at all parts of the conductor resulting in the flow of current
(b) Electrons moving at the Fermi speed
(c) Speed with which charge drifts in a conductor
(d) Holes moving at the Fermi speed

DFCCIL Executive (EE) -30.09.2021

Ans. (c) : Charge velocity- The speed of charged flows in a conductor is called charge velocity.

$$V_d = \frac{I}{neA}$$

Where, I = flowing current
 n = Electron density
 e = Charge of electron
 A = Area of cross section.

27. Which of the following is true for resistance of a conductor?

(a) It is directly proportional to its length
(b) It is directly proportional to the area of cross section of the conductor
(c) It is independent of nature of the material
(d) It is independent of temperature of conductor

LMRC JE (S&T) 12.05.2018

Ans. (a) : **Resistance:** The property of any conductor that opposes the flow of electric current through it is called resistance.

It is denoted by 'R' and the SI unit is the Ohm (Ω)

The resistance is given by; $R = \rho \frac{l}{A}$

$$R \propto \frac{l}{A}$$

∴ Resistance of a conductor varies directly proportional to its length and inversely proportional to the area of cross section of conductor.

28. Materials in which large number of free electrons are available in outermost orbit are called :

(a) Semiconductors (b) Conductors
(c) Insulators (d) Magnetic materials

DMRC Electronics 19.04.2018, 12:15 to 2:30 PM

Ans. (b) : The large number of free electrons are available in outermost orbit are called conductor.

Example- Cu, Ag, Al etc.

29. All conducting materials have a resistivity of less than

(a) $10^{-3} \Omega\text{m}$ (b) $10^{-2} \Omega\text{m}$
(c) $10^{-6} \Omega\text{m}$ (d) $10^3 \Omega\text{m}$

DMRC Electronics 11.04.2018, 12:15 to 2:30 PM

Ans. (a) : All conducting materials have a resistivity of less than $10^{-3} \Omega\text{-m}$

- The electrical resistivity of particular conductor material is a measure of how strongly the material opposes the flow of electric current through it.

30. Which of the following has the largest number of free electrons?

(a) Intrinsic semiconductor
(b) Conductor
(c) Extrinsic semiconductor
(d) Insulator

UPMRC (SCTO) 14.04.2021

Ans. (b) : Conductors has largest number of free electrons. A conductor is a substance or material that allows electricity to flow through it. In a conductor, electrical charge carriers, usually electrons or ions, move easily from atom to atom when voltage is applied.

31. For a copper wire with circular cross sections (diameter = 1.03 mm) with resistivity = $2.5 \times 10^{-8} \Omega\text{-m}$, concentration of free $e^- = 8.4 \times 10^{28} \text{ m}^{-3}$ and current density = $2.1 \times 10^6 \text{ A/m}^2$, determine the mobility of electrons.

(a) $3.567 \times 10^{-3} \text{ m}^2/\text{V}\cdot\text{sec}$ (b) $4.67 \times 10^{-2} \text{ m}^2/\text{V}\cdot\text{sec}$
 (c) $2.173 \times 10^{-5} \text{ m}^2/\text{V}\cdot\text{sec}$ (d) $1.542 \times 10^{-4} \text{ m}^2/\text{V}\cdot\text{sec}$

UPMRC JE- 20.01.2020, 4:00 to 6:00 PM

Ans. (*):

$$\begin{aligned} d &= 1.03 \text{ mm} \\ \therefore r &= \frac{1.03}{2} = 0.515 \text{ mm} \\ \text{resistivity } (\rho) &= 2.5 \times 10^{-4} \Omega \cdot \text{m} \\ \therefore \text{total, } \rho_T &= 2.5 \times 10^{-4} \times \pi r^2 \\ &= 2.5 \times 10^{-4} \times \pi \times (0.515 \times 10^{-3})^2 \\ \rho_T &= 2.083 \times 10^{-10} \Omega \cdot \text{m} \\ n &= 8.4 \times 10^{28}/\text{m}^3 \\ \mu &= \frac{1}{n \rho_T} \\ &= \frac{1}{8.4 \times 10^{28} \times 1.6 \times 10^{-19} \times 2.083 \times 10^{-10}} \\ &= \frac{10^{(-28+19+10)}}{8.4 \times 1.6 \times 2.083} \\ &= 0.03572 \times 10 \end{aligned}$$

Mobility of electrons (μ) = $3.572 \times 10^{-1} \text{ m}^2/\text{V}\cdot\text{sec}$

32. A conductor material has a free-electron density of 10^{25} electrons per m^3 , When a voltage is applied, a constant drift velocity of 1.4×10^{-3} m/s. If the cross-sectional area of the material is 1 cm^2 , calculate the magnitude of the current. Electronic charge is 1.6×10^{-19} coulomb.

(a) 0.224 A (b) 0.2 A
 (c) 0.25 A (d) 0.1 A

DFCCIL Executive (EE) -30.09.2021

Ans. (a) : Given that,

$$\begin{aligned} \text{Free-electron density } (n) &= 10^{25} \text{ per } \text{m}^3 \\ \text{Charge on electron } (e) &= 1.6 \times 10^{-19} \text{ Coulomb} \\ \text{Cross section area } (A) &= 1 \text{ cm}^2 = 1 \times 10^{-4} \text{ m}^2 \\ \text{Drift velocity } (V_d) &= 1.4 \times 10^{-3} \text{ m/s} \end{aligned}$$

$$\begin{aligned} I &= neAV_d \\ &= 10^{25} \times 1.6 \times 10^{-19} \times 1 \times 10^{-4} \times 1.4 \times 10^{-3} \\ I &= 0.224 \text{ A} \end{aligned}$$

33. Which of the following lists four platinum, silver, aluminium and copper in increasing order of resistivity?

(a) Platinum, Aluminium, Copper, Silver
 (b) Silver, Copper, Platinum, Aluminium
 (c) Copper, Silver, Aluminium, Platinum
 (d) Silver, Copper, Aluminium, Platinum

NMRC Electronic JE 09.03.2017, SAIL 29.03.2014

Ans : (d)

Material	Resistivity ($\Omega \cdot \text{m}$)
Silver	1.59×10^{-8}
Copper	1.68×10^{-8}
Gold	2.4×10^{-8}

Aluminium	2.88×10^{-8}
Tungsten	5.6×10^{-8}
Platinum	10.6×10^{-8}

Increasing order of resistivity -
 Silver, Copper, Aluminium, Platinum.

34. Superconductors now a day found their application in various fields. This is due to the fact that they:

(a) generate regions free from magnetic field
 (b) manufacture bubble memories
 (c) generate electrostatic field
 (d) generate very strong magnetic field

DFCCIL EE 17.04.2016, Shift-II

Ans. (d) : Super conductor now a day found their application in various field. This is due to the fact that they generate very strong magnetic field.

Such substances or metal in which the value of resistivity decrease very rapidly at a certain temperature become zero. These substances or metal are called superconducting substances and this property is called superconductivity.

Superconductor generate high electromagnetic field so, they are used in magnetic resonance imagining and nuclear magnetic resonance.

35. The magnitude of critical density in a superconductor depends on:

(a) Both temperature and magnetic field strength
 (b) temperature for some time and then on magnetic field strength
 (c) temperature
 (d) magnetic field strength

DFCCIL EE 17.04.2016, Shift-II

Ans. (a) : The magnitude of critical density in a superconductor depend on both temperature and magnetic field strength. The critical field generally increases to absolute zero as the temperature decreases.

36. A material is said to have become superconductor when

(a) its resistance becomes negative
 (b) its resistance becomes very small
 (c) its resistance decreases
 (d) its resistance becomes zero

RRB SSE Bilaspur Yellow paper, 21.12.2014

JMRC JE-2013

Ans : (d) A material is said to have become superconductor when its resistance becomes zero. A superconductor is a material that attains, Superconductivity a state of matter with no electrical resistance. In a superconductor an electric current can persist indefinitely.

For Superconducting material (μ_r) = 0, Susceptibility (χ) = Negative,

37. The transition temperature of superconductivity material titanium is :

(a) 1.17 K (b) 14 K
 (c) 9.2 K (d) 0.49 K

UPMRCL JE 03.01.2023, 1:30 PM- 3:30 PM

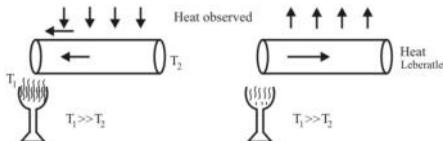
Ans. (d) : Titanium is superconducting material when cooled below its critical temperature of 0.49K.

38. The current carrying capacity of aluminium is what percent of the carrying capacity of copper?
 (a) 15% (b) 30%
 (c) 75% (d) 25%

UPMRCL JE 03.01.2023, 1:30 PM- 3:30 PM

Ans. (c) : The percentage current carrying capacity of Aluminum is 75 % of current carrying capacity of copper. **Current carrying capacity-** Current carrying capacity of a conductor is defined as how much load a conductor can carry. When the current flows through the conductor a certain level of heat generates which can further increases up-to the melting temperature of the insulation or insulating material.

These factors are-


- Conductor size
- Ambient temperature
- Installation conditions.

39. If a piece of metal is made to have a temperature gradient between its two ends, an emf is observed to exist between those ends. This effect is known as :

(a) Thomson effect (b) Seebeck effect
 (c) Peltier effect (d) Thevenin effect

LMRC SCTO (Electronics) 16.04.2018, Shift-II

Ans. (a) : If a piece of metal is made to have a temperature gradient between its two ends an emf is observed to exist between those ends. This effect is known as Thomson effect.

40. When a material becomes super conducting then its resistivity is
 1. Very low
 2. Zero
 3. Approximate 10% of normal value
 4. Approximate 20% of normal value
 (a) 1 (b) 2
 (c) 3 (d) 4

RRB JE (Shift-3), 28.08. 2015, AAI 26.4.2015

Ans : (b) The resistivity of super conducting materials becomes zero. Superconducting materials have most of the free electrons and minimum resistivity.

41. The material of wires used for making standard resistances is usually:
 (a) Manganin (b) Phosphor Bronze
 (c) Nichrome (d) Copper

DFCCIL EE 11.11.2018, 12:30 PM–2:30 PM

JMRC JE 10.06.2017

Ans. (a) : The material of wires used for making standard resistances is usually manganin. Manganin is an alloy of copper, nickel and manganese. Alloy like manganin and constantan are used for making standard resistance coil as they have high resistivity and a low-temperature co-efficient of resistance.

||(ii) Semiconductor & Insulators

42. Hydrogen is used as an insulating gas in electrical equipment. What is the main reason for its use in such applications?
 (a) It is a good conductor of electricity.
 (b) It has a high dielectric strength and low molecular weight.
 (c) It is stable at high temperatures
 (d) It has a high molecular density

RRB JE 04.06.2025, Shift-I (Re-Exam)

Ans. (b) : Hydrogen is used as an insulating gas in electrical equipment. It has a high dielectric strength and low molecular weight (2.016 g/mol).

43. Which of the following best describes a semiconductor material?
 (a) A material that behaves as a conductor at low temperatures and as an insulator at high temperatures.
 (b) A material that only conducts electricity at high temperatures.
 (c) A material that allows electric current to pass freely in both directions.
 (d) A material that can conduct electricity under certain conditions but not others.

RRB JE 04.06.2025, Shift-I (Re-Exam)

Ans. (d) : A semiconductor is a material that conducts electricity only under certain conditions such as increased temperature, light or impurity doping.

- Electrical conductivity of a semiconductor material lies between a conductor and an insulator.
- The conductivity can be increased by adding small amounts of impurities to form n-type and p-type semiconductors.

44. Which of the following is a commonly used thermosetting resin in electrical applications due to its excellent electrical insulating properties and resistance to high temperatures?
 (a) Polystyrene (b) Epoxy resin
 (c) Polyethylene (d) Polyvinyl chloride

RRB JE 04.06.2025, Shift-I (Re-Exam)

Ans. (b) : Epoxy resin is a commonly used thermosetting resin in electrical applications due to its excellent electrical insulating properties and resistance to high temperatures.

- Epoxy resin is a thermosetting resin which provides excellent electrical insulation.
- It has high thermal stability.
- It is also chemically resistant.

45. Which of the following statements about extrinsic semiconductors is correct regarding the effect of temperature on their conductivity?

(a) In p-type semiconductors, increasing the temperature leads to an increase in the number of holes as more electrons get excited to the conduction band.